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INFLUENCE OF POISSON'S RATIO ON THE CONDITION
OF THE FINITE ELEMENT STIFFNESS MATRIX

ISAAC FRIEDt

Department of Mathematics,
Boston University, Boston, Massachusetts 02215

Abstract-The dependence of the spectral condition number of the finite element stiffness matrix, in the case
of a nearly incompressible solid, is established as a function of the mesh size and Poisson's ratio.

INTRODUCTION

IT HAS been observed [1] in the finite element analysis of elastic solids that as the Poisson
ratio v of the material approaches t (or - 1), that is as the material nears incompressibility,
the global stiffness matrix becomes progressively more ill-conditioned until the matrix
becomes computationally singular.

It is the main purpose of this paper to determine the influence of v, as the material nears
incompressibility, on the spectral condition number of the stiffness matrix. This is achieved
with a technique originally described in Ref. [2] (see also Refs. [3-6] for bounding the
extremal eignevalues of the global mass and stiffness matrices in terms of the extremal
eigenvalues of the corresponding element matrices, the number of elements meeting at a
point and the fundamental frequency of the structure.

SPECTRAL CONDITION NUMBER

The method of finite elements reduces the continuous boundary value problem and
eigenvalue problem

Lu = f and Lu = AU in 0 (1)

where L is a linear differential operator and where u satisfies some boundary condition
on 00, to the corresponding algebraic problems

KU = band K U = J1.M U

where K and M are the global stiffness and mass matrices.
The spectral condition numbers C2(K) of K and Cz{M) of M are defined as

Cz{K) = IIKllz1IK-111 z and Cz(M) = IIMllzlIM- 1
1l z

or since K and M are symmetric and at least positive semi-definite

C2(K) = A~/Af and Cz{M) = ).~/).'t
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in which A.f, A.~, A.~ and A.':.! are the lowest (1st) and highest (Nth) eigenvalues of K
and M.

Bounds will be derived now on the extremal eigenvalues of K and M and consequently
on Cz(K) and Cz(M). For this, let ke and me denote the element stiffness and mass matrices.
Let also U and Ue denote a global and element vectors; then the quadratics UTK U and
UT M U can be written as

N",

UTKU = I u;keue and
e=l

./lie

UTMU = I u;meUe
e= 1

(5)

where summation is carried out over all the N e finite elements in the mesh.
Denoting by <p 1, <Pz, ... ,<Pn the shape functions inside the element, the quadratic

u;meUe can be written as

u;'meue = {(U1<Pl+uz<P2+ ... +Un<Pn)ZdXdydZ. (6)

Hence if the shape functions are linearity independent then m. is positive definite such that
A7' > 0 for all e,

Denoting by A.~, A~, ..1.7 and A.; the extremal eigenvalues of the element matrices, we
have for each element

Substituting equation (7) into equation (5) we obtain

N~, Nt'

min(A.~') I u;Ue S uT KU s max(A.~") I u;Ue
e ~=l e e=l

and the same thing for M.
If U is normalized such that UT U = I then it can be shown that

N"
I s I u;Ue S Pmax

e=1

where Pmax denotes the maximum number of elements meeting at a nodal point.
Equations (8) and (9) lead to

max(A.~e) s A.~ s Pmax max(A~e)
e e

max(A.:e) S A.Iff S Pmax max(A.:;'e)
e e

and

min(A.~e) S A.f S A.~
e

min(A.7e) S A.~ S A.Iff.
e

(7)

(8)

(9)

(10)

(11)

But since the element stiffness matrix k is usually only positive semi definite, the lower
bound on Af as given in equation (11) is reduced to the trivial fact that Af ~ O.

To obtaiFl. a non trivial bound on Af we make use of the variational nature of the finite
element method and Rayleigh's principle. This principle asserts that if At is the lowest
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exact eigenvalue of the structure then

UTKU/UTMU 2: AI'

Choosing U to correspond to A~ we obtain from equation (12) that

Af 2: AlAr

and consequently from equation (11) that

A~ 2: Al min(A';'e).
e

Also [2J

A~ ::; 1l1Pmax max(A~e)
e

(12)

(13)

(14)

where III is the lowest eigenvalue calculated by the finite element method. For a sufficiently
fine mesh III will be close [7J enough to Al and replacing III by Al we have

Al min(l,;,e) ::; A~ ::; A1Pmax max(A~e).
e e

The bounds on C 2(K) and C 2(M) become then

max(A~) (max(A~)Pmax
1 (1m) ::;C2 K)::;; 1 • ('m)11.1 max 11.. Pmax 11.1 min Al

and

1 < C (M) < max(A~)Pmax.
- 2 - min(A';')

(15)

(16)

(17)

Equations (16) and (17) are the principal results of this section.
Since Al appearing in equation (16) is the fundamental eigenvalue of the continuous

structure and is therefore independent of the discretization, the dependence of the bounds
on C 2(K) and C 2(M) on the discretization parameters is expressed solely by A';', A~, A.~ and
Pmax' It is also seen from equations (16) and (17) that a sufficient condition for the in­
vertibility of K and M is the positive definiteness of m. This is assured in turn by the linear
independence of the shape functions.

As an application to equations (18) and (19) consider a triangular membrane element
with linear variation of displacements inside it. Its element stiffness and mass matrices can
be written as

1 T
k·· = -h·h·n· n·

IJ 2A I } I }
i, j = 1,2,3, (

2 1 1)
and m = ~ 1 2 1

1 1 2

(18)

where A, hi and n j are the area of the element its sides and unit vectors normal to the sides,
respectively. Here

l/sin (} ::; A~ ::; 3PmaJsin ()

A1 Ami.J6 ::; Af ::; 2A1PmaxAmax/3

(19}

(20}
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in which edenotes the smallest angle in the mesh. Hence

3 18Pmax
::; C2(K) ::; A A . e

1 min sm
(21)

and the condition of the stiffness matrix inevitably deteriorates as eis decreased.
In the same manner we obtain for the tetrahedron

H max ::; C
2
(K) ::; 30PmaxH max

3AIPmax Vmax )·1 Vmin
(22)

where V denotes the volume of the element and where H = area of largest face/volume.

MAXIMUM CONDITION NUMBER

The maximum condition number Coo(K) is defined as

where
IV

IIKlloo max L IKijl.
1 j= 1

Obtaining a bound on II K 1100 is simple and we readily have

IIKlloo ::; Pmax max Ilkell oo ·
e

(23)

(24)

(25)

For a positive definite matrix K of dimension N, Ku+K jj > IKjjl for any i and j.
Therefore

IIKlloo < N max(KiJ
i

(26)

The finite element solution Ii is obtained by minimizing the total potential energy n(u)

n(u) = a(u, u) - (f, u) (27)

where a(u, u) is the (say elastic) energy and where (f, u) is the work of the external forces f.
Also

n(Ii)-n(u) = a(u-li, u-li) ~ 0

and since the first variation of nat u and Ii vanishes we have

(f, u-U) ~ 0

or

(f, u) ~ (f, u).

(28)

(29)

(30)

Choosing f to be a point force (delta function) equation (30) yields u ~ U. That is, the
true solution u at a point of application of a point force is always larger or equal to the
finite element displacement uat that point. The response (Green's) function to a point
force at ~ is denoted by G(x, ~). We also denote by r the maximum of G(x, x). The diagonal
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terms Kii' of the flexibility matrix are the responses to point loads and therefore

max(Kii ') :5 r i = 1,2, ... , N. (31)
i

Hence from equation (26) we have

and consequently

Coo(K) < Nfpmax max Ilkell 00'

e

(32)

(33)

(34)

The maximum of the influence function r in equation (33) plays the role of A, in
equation (16).

More on this can be found in Ref. [6]. Since r is in many cases unbounded the bound in
equation (33) is less general than that in equation (16).

INFLUENCE OF POISSON'S RATIO

The bounds on Cz(K) in equation (16) become closer as A::'/A7 nears 1. These bounds
are therefore particularly suitable to study the influence on Cz(K) of such discretization
and intrinsic parameters of the problem that do not enter into the ratio A::'/A7. This is the
case with Poisson's ratio v which being an elastic property of the material appears only in
the element stiffness matrix k but not in the element mass matrix m. We should be able
then, by using equation (16), to obtain sharp bounds on Cz{K) and hence to establish the
influence of v on the condition of K.

We consider first a three dimensional solid discretized by a uniform mesh of rectangular
tetrahedronal elements.

The three displacements u, v and ware interpolated inside the element by

u = u,cP, +uzcPz +U3cP3 +U4cP4

V= v,cP, +vzcPz +V3cP3 +V4cP4

w = w,cP, +WZcPZ+W3cP3+W4cP4

where uj , Vi and Wj, i = 1,2,3,4 are the nodal values of u, v and wand where cP" cPz, cP3
and cP4 are given by

cP, = 1-(x+y+z)/h,cPz = X/h,cP3 = y/handcP4 = z/h.

The element stiffness matrix k are computed from the elastic energy expression

~f (Ae Z +2G(e~x+ e;y+ e;z) +G(e~y+ e;z + e~z)) dx dy dz

n

(35)

in which exx , eyy and ezz are the direct strains, exy , eyZ> exz are the shear strains ande is the
volume expansion. The relation between Poissoos ratio v, the elastic modulus E and A
and G is given by

Ev E
A= and G=--.

(1 +v)(1- 2v) 2(1 +v)
(36)
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(37)

as vii the mode corresponding to the maximal eigenvalue of the element stiffness matrix
becomes nearly that producing a pure volume change. Now, since

au au au
e=-+-+­ax oy 02

the dilatation mode is (-1, 1,0,0, -1,0, 1, 0, -1,0,0, 1) and the maximum eigenvalue
of k, for vii is given by

Hence

'k Evh
III Z = (1 + v)(1 - 2v)"

For v1- 1 we obtain in the same manner

Ak _ 6Eh
IZ - (l+v)(I-2v)

The element mass matrix m for the tetrahedronal element can be written as

2

(38)

(39)

(40)

h3

m=-
60

a=
2

2

2

(41 )

(42)

Its extremal eigenvalues being A7 = h3/60 and A7Z = h3/12. Hence

E h- 2 EPmax
("1-- < C2(K) < ("Z-- -----:c-

AIPmax (l + v)(l- 2v) - - Al (l + v)(l- 2v)

in which C I = 6 and ("2 = 30 for vi!, and C I = 72 and C2 = 360 for vl-I. The lowest
eigenvalue Al of the elastic solid is proportional to E and may well depend on v. It is certain,
however, that it remains bounded as the solid nears incompressibility. As CI' ("2 and A}
are finite at the limit vi! or v1-l, equation (46) predicts that

h- 2

Cz(K) = c(I +v)(I-2v) (43)

where C is independent of hand v.
Generalizing these results to higher order elements is formal. The minimal eigenvalue

of m is generally given by A7 = c3h3 where C3 is independent of hand v. The maximum
eigenvalue of k is given by A~ = c4 Eh/(1 +v)(1-2v) where C4 is again independent of
hand v. Therefore also in the more general case the bounds in equation (42) and con­
sequently equation (43) hold.

CONCLUSIONS

Let A~, ),~, A7 and A;:' be the extremal (1st and nth) eigenvalues of the element stiffness
and mass matrices k and m. Let also A} be the exact lowest eigenvalue of the structure and
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Pmax the maximum number of finite elements meeting at a nodal point. Then the spectral
condition number Cz(K) of the stiffness matrix K and Cz(M) of the mass matrix Mare
bounded by

and

max(A~) C ( maX(A~)Pmax
1 (1m) S Z K) S 1 . (1m)

11.1 max 11." Pmax 11.1 mIn 11.1
(44)

(45)1 < C (M) < maX(A;:')Pmax
- z - min(A7)

where max( ) and min( ) refer to maximal and minimal values in the mesh.
Let f denote the exact maximum deflection due to a point load (a point torque etc.) at

the point of application. Then

Coo(K) < NfPmax max(llkll 00)'

For a nearly incompressible solid the bounds in equation (44) yield

Eh- z EPmaxh - z
CIS Cz(K) < Cz---=-='-------

A1Pmax(1 +v)(1- 2v) - Al (1 +v)(1- 2v)

(46)

(47)

where v is Poisson's ratio, h the diameter of the element, and C1 and Cz are independent of
hand v. For a right angular tetrahedronal element, and vit, C1 = 6 and Cz = 30. A typical
value for E/A 1 (for a nearly spherical [8] solid of diameter 1) is 1.
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AficrpaKT-,L(rrll crry'laJi 6rrH3H HecllCHMaeMoro TBePAOrO Terra, onpeAenlleTCIi 3aBHCHMOCTb '1HCna cnen­
parrbHoro ycrroBHII Mil MaTpHUhI IC03c1M11HUHeHTOB lICCCTKOCTH B MeToAe ICOHe'lHOrO 3neMCHTa, B BHAe
c!>YHICUHH pa3Mcpa OTBCpCTHIi H '1HCrra nyaccOHa.


